
Introduction to Git for
Version Control

This tutorial is aimed at Data Scientists and Statisticians

Presented by: Pavan Datta

Outline of Topics

1. What is Git? Why use Git?
2. Definition of Terms
3. Common and Useful Commands
4. Step-by-Step Walkthrough with Git
5. Live Tutorial + Setup Git/GitHub
6. References

1. What is Git? Why use Git?
 A open source distributed version control system (DVCS)
 Source code is available on a remote repository (GitHub / GitLab)
 Source code can be cloned onto numerous local repositories

 Lightweight, fast, and flexible
 Most operations are performed locally
 Git only stores differences between commits
 Easily context switch between branches
 Easily manage changes to files across large teams
 Git keeps track of every change ever made

Multiple backups are supported

Many different workflow styles supported

1. What is GitHub? Why use GitHub?
GitHub is like Facebook, but for hosting code
 With the right permissions, code sharing and collaboration are possible
 Many R-packages are now available via GitHub

GitHub makes code collaborating easier than before

 Supports many different workflow styles

 Let’s check it out!

Subversion (SVN) style workflow

Integration Manager Workflow

Dictator and Lieutenants Workflow

1. Flexible Workflow Styles Supported by Git

A

B

C

1. Flexible Workflow Styles Supported by Git
A B

C

2. Definition of Terms
 Repository – directory structure under which all files are stored for a project

 Local Repository – the repository hosted locally on your computer system
 All project contributors make their changes (commits) in their own local repositories

 Remote Repository – the repository hosted remotely on GitHub / GitLab
 All project contributors push their local changes (commits) to the remote repository
 All project contributors pull changes (commits) from the remote repository into their local repositories

 Branches – the different workflows or paths in a repository
 Each repository has at least one branch (the default branch is called master)
 Branches get sync’d between remote and local repositories
 Branches can be created, deleted, and merged
 Branches can be used as a playground for your changes so that they do not interfere with the

master branch

 Clone – the process of creating a local copy of a remote repository

2. Definition of Terms
 Commit – a change (or snapshot in time)

 Each branch consists of commits
 Each commit has a unique SHA or hash (40 character checksum) by which it is identified
 A commit considers only diffs or deltas from the previous commit

 Checkout – the process of selecting a specific branch or commit (snapshot)

 Pull – the process of fetching commits from the remote repository and merging the
differences into the local repository
 Fetch – get/copy commits from the remote repository, into the local repository
 Merge – account for all differences between the local repository and remote repository

 Push – send changes from the local repository to the remote repository
 This is frequently preceded by a pull
 Permissions in the remote repository may prevent you from performing a push and may instead

require a formal pull-request (e.g. merge-request) through GitHub / GitLab

2. Definition of Terms (Visually)

 Consider a remote repository with
one branch
 Dots represent commits
 Small arrows represent pointers to

commits
remote

local

master

head

2. Definition of Terms (Visually)

 Consider a remote repository with
one branch
 Dots represent commits
 Small arrows represent pointers to

commits

 Clone the remote repository
locally

remote

local

master

head

master

head

2. Definition of Terms (Visually)

 Consider a remote repository with
one branch
 Dots represent commits
 Small arrows represent pointers to

commits

 Clone the remote repository
locally

 Create a new branch in the local
repository

remote

local

master

head

master

head

mybranch

2. Definition of Terms (Visually)

 Clone the remote repository
locally

 Create a new branch in the local
repository

 Make commits to the new branch
 Head is a pointer the current commit

in your workspace

remote

local

master

head

master head

mybranch

2. Definition of Terms (Visually)

 Create a new branch in the local
repository

 Make commits to the new branch
 Head is a pointer the current commit

in your workspace

 Push all commits associated with
the new branch to the remote
repository

remote

local

master head

mybranch

master

head

mybranch

2. Definition of Terms (Visually)

 Make commits to the new branch
 Head is a pointer the current commit

in your workspace

 Push all commits associated with
the new branch to the remote
repository

 Merge the new branch into the
master branch

remote

local

master

head

mybranch

master

head

mybranch

2. Definition of Terms (Visually)

 Push all commits associated with
the new branch to the remote
repository

 Merge the new branch into the
master branch

 Push all changes to the remote
repository

remote

local

master

head

mybranch

master

head

mybranch

2. Definition of Terms (Visually)

 Merge the new branch into the
master branch

 Push all changes to the remote
repository

 Suppose another developer
pushes changes to the remote
repository

remote

local 1

master

head

mybranch

master

head

mybranch

local 2

2. Definition of Terms (Visually)

 Push all changes to the remote
repository

 Suppose another developer
pushes changes to the remote
repository

 Fetch the new commits from the
remote repository

remote

local

master

head

mybranch

master

head

mybranch

2. Definition of Terms (Visually)

 Suppose another developer
pushes changes to the remote
repository

 Fetch the new commits from the
remote repository

 Merge the differences in your local
repository

remote

local

master

head

mybranch

master

head

mybranch

2. Snapshot of Git Repositories

remote

local 1

master

head

mybranch

master

head

mybranch

local 2 local 3

master

head

mybranch

mybranch2

master

head

mybranch

3. Navigating with Git
 The process of promoting code/changes is as follows:

1. Source code changes made locally in workspace (Git is unaware)
2. Stage the files that changed (e.g. tell Git which files you want to commit)
3. Commit the files that changed to your local repository (Git is aware of changes)
4. Push changes from local repository to remote repository

 All Git operations may be performed by command-line or using
conveniently designed user-interfaces for your OS

 This tutorial relies exclusively on the command-line approach
 Used by most people in the user community
 Well documented and easy to get help

3. Common and Useful Commands
> git clone <repo-location>:<user>/<repo-name>.git
 Create a clone of the remote repository locally

> git remote -v
 Check the remote repository and its alias

> git checkout <branch-name | commit-SHA>
 Look at a particular branch or commit (sets the HEAD pointer)

> git checkout –b <branch-name>
 Create a new branch and switch to it (sets the HEAD pointer to the new branch)

3. Common and Useful Commands
> git pull <remote-repo> <branch>
 Fetch commits and merge differences from a branch in the remote repository
 NOTE: Only state the remote repository and branch name if it isn’t already set

> git push <remote-repo> <branch>
 Push commits to the remote repository and its respective branch
 NOTE: Only state the remote repository and branch name if it isn’t already set

> git push –u <remote-repo> <branch>
 Push a newly created branch to the remote repository

> git log –-oneline –n10
 View the last 10 commits, with each commit taking up a single line

3. Common and Useful Commands
> git status
 Check the status of tracked files, staged files, and files ready for commit

> git add <file(s)>
 Stages files for commit

> git commit –m “<Commit message>”
 Commits all staged files with the specified commit message
 Preceded by the add command

> git revert <commit-hash>
 Revert or undo a commit
 NOTE: This adds a new commit to undo a previous commit

3. Common and Useful Commands
> git diff <commit-hash-1> <commit-hash-2>

 Visually see the differences between two commits
 If only one commit-hash is provided, then run diff against the HEAD commit
 If no commit-hash is provided, then run diff against the

> git diff –-stat <commit-hash-1> <commit-hash-2>
 List the files that differ between two commits

 Consider a remote repository with
one branch
 Dots represent commits
 Small arrows represent pointers to

commits
remote

local

master

head

3. Common and Useful Commands (Visually)

 Consider a remote repository with
one branch
 Dots represent commits
 Small arrows represent pointers to

commits

 Clone the remote repository
locally

> git clone
git@github.com:user1/my_repo

remote

local

master

head

master

head

3. Common and Useful Commands (Visually)

 Clone the remote repository
locally

> git clone
git@github.com:user1/my_repo

 Create a new branch in the local
repository

> git checkout –b mybranch

remote

local

master

head

master

head

mybranch

3. Common and Useful Commands (Visually)

3. Common and Useful Commands (Visually)

 Create a new branch in the local
repository

> git checkout –b mybranch

 Make commits to the new branch
> # Make changes to files...
> git add <file(s) that changed>
> git commit –m “Initial commit”

remote

local

master

head

master head

mybranch

3. Common and Useful Commands (Visually)

 Make commits to the new branch
> # Make changes to files...
> git add <file(s) that changed>
> git commit –m “Initial commit”

 Push all commits associated with
the new branch to the remote
repository

> git push –u origin mybranch

remote

local

master head

mybranch

master

head

mybranch

3. Common and Useful Commands (Visually)

 Push all commits associated with
the new branch to the remote
repository

> git push –u origin mybranch

 Merge the new branch into the
master branch

> git checkout master
> git merge mybranch

remote

local

master

head

mybranch

master

head

mybranch

3. Common and Useful Commands (Visually)

 Merge the new branch into the
master branch

> git checkout master
> git merge mybranch

 Push all changes to the remote
repository

> git push
> git push origin mybranch

remote

local

master

head

mybranch

master

head

mybranch

3. Common and Useful Commands (Visually)

 Push all changes to the remote
repository

> git push
> git push origin mybranch

 Suppose another developer
pushes changes to the remote
repository

remote

local 1

master

head

mybranch

master

head

mybranch

local 2

3. Common and Useful Commands (Visually)

 Suppose another developer
pushes changes to the remote
repository

 Fetch the new commits from the
remote repository

> git checkout mybranch
> git fetch
> git fetch origin mybranch

remote

local

master

head

mybranch

master

head

mybranch

3. Common and Useful Commands (Visually)

 Fetch the new commits from the
remote repository

> git checkout mybranch
> git fetch
> git fetch origin mybranch

 Merge the differences in your local
repository

> git merge origin mybranch

remote

local

master

head

mybranch

master

head

mybranch

3. Typical Workflow with Common Commands
Clone the repository
> git clone git@github.com:<user>/<repo_name>.git

Create a new ‘feature’ branch
> git checkout –b my_feature_branch

Do work locally on your files...

Get ready to commit your code changes
> git status
> git add <file1> <file2> ... <fileN>
> git commit –m “A meaningful commit message...”

Make sure you branch is sync’d with the remote repository before pushing commits
> git pull <remote-repo> <branch>
> git push <remote-repo> <branch>

4. Step-by-Step Walkthrough with Git

 Below is the state information for the example to be presented:
 There exists a remote repository with the master branch and one file
 Only one individual is actively making changes to the repository at a time

 The following will be demonstrated:
 Branch creation
 Changes local to the workspace
 Staging and committing files
 Updating the local and remote repositories

>

No files in local repository

remote

local

No files in staging area

No local repository

master

head

> git clone git@github.com:user/myrepo.git
>

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote

todo.txt

Changed Files: Untracked Files:

> git clone git@github.com:user/myrepo.git
>

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote

todo.txt

Changed Files: Untracked Files:

test.txt

test.txt

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote

todo.txt

Changed Files: Untracked Files:

test.txt

newbranch

test.txt

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3

test.txt

newbranch

test.txt

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3

test.txt

newbranch

test.txt

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
>

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote
5. Make more changes

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3
Testing…1

test.txt

newbranch

test.txt

todo.txt

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
>

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote
5. Make more changes

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3
Testing…1

test.txt

newbranch

test.txt

todo.txt

newbranch

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
> git add text.txt todo.txt
>

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote
5. Make more changes

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3
Testing…1

test.txt

newbranch

test.txt

todo.txt

newbranch

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
> git add text.txt todo.txt
> git commit –m “Updated test.txt + todo.txt”
>

remote

local

Changes for Commit:

master

head

master

head

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote
5. Make more changes

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3
Testing…1

test.txt

newbranch

newbranch

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
> git add text.txt todo.txt
> git commit –m “Updated test.txt + todo.txt”
> git checkout master
>

remote

local

Changes for Commit:

master

head

master

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote
5. Make more changes

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3
Testing…1

test.txt

newbranch

newbranch

head

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
> git add text.txt todo.txt
> git commit –m “Updated test.txt + todo.txt”
> git checkout master
> git merge newbranch
>

remote

local

Changes for Commit:

master

head

master

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote
5. Make more changes

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3
Testing…1

test.txt

newbranch

newbranch

head

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
> git add text.txt todo.txt
> git commit –m “Updated test.txt + todo.txt”
> git checkout master
> git merge newbranch
> git push
>

remote

local

Changes for Commit:

master

master

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote
5. Make more changes

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3
Testing…1

test.txt

newbranch

newbranch

head

head

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
> git add text.txt todo.txt
> git commit –m “Updated test.txt + todo.txt”
> git checkout master
> git merge newbranch
> git push
> git revert <commit-id>
>

remote

local

Changes for Commit:

master

master

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote
5. Make more changes

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3
Testing…1

test.txt

newbranch

newbranch

head

head

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
> git add text.txt todo.txt
> git commit –m “Updated test.txt + todo.txt”
> git checkout master
> git merge newbranch
> git push
> git revert <commit-id>
>

remote

local

Changes for Commit:

master

master

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3

test.txt

newbranch

newbranch

head

head

> git clone git@github.com:user/myrepo.git
> git checkout –b newbranch
> git add test.txt
> git commit –m “Updated test.txt”
> git push –u origin newbranch
> git add text.txt todo.txt
> git commit –m “Updated test.txt + todo.txt”
> git checkout master
> git merge newbranch
> git push
> git revert <commit-id>
> git branch –d newbranch
>

remote

local

Changes for Commit:

master

master

Things to do:
1. Clone repo
2. Make changes
3. Commit changes
4. Update remote

todo.txt

Changed Files: Untracked Files:

Testing…testing…1…2…3

test.txt

newbranch

head

head

*** Forking vs Cloning ***

VS

*** Forking vs Cloning ***
 Fork – a remote copy of a remote repository at a certain point in time

 A GitHub construct (e.g. applies to all public remote repositories)
 Ex. Making a copy of someone else’s GitHub [remote] repository in your GitHub account
 All public repositories on GitHub can be forked

 Clone – a local copy of a remote repository at a certain point in time
 A Git construct (independent of GitHub)
 All public repositories on GitHub (including forks) can be cloned to a local repository
 You can always push to your fork, but you might not have permission to push to an arbitrary repo

 Collaborative Workflow:
1. Create a fork of a project or repository that you want to contribute to in GitHub
2. Clone your fork to your local repository (refer to your fork as origin)
3. Add the original remote repository to your local repository (refer to this as upstream)
4. Pull changes from upstream and push changes to origin
5. When you are ready to make your changes available to the original remote repository, create a pull-

request from your fork
6. Repeat steps (4) – (5)

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

master

head

mybranch

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

master

head

mybranch

remote: upstream

F O R K

master

head

mybranch

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

master

head

mybranch

remote: upstream

master

head

mybranch

master

head

mybranch

C
L
O
N
E

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

master

head

mybranch

remote: upstream

master

head

mybranch

master

head

mybranch

mybranch2

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

master

head

mybranch

remote: upstream

master

head

mybranch

mybranch2

master

mybranch

mybranch2

head

P
U

 S
 H

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

remote: upstream

master

head

mybranch

mybranch2

master

mybranch

mybranch2

head

master

head

mybranch

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

remote: upstream

master

mybranch

mybranch2

head

master

head

mybranch

master

head

mybranch

mybranch2

P U
 L L

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

remote: upstream

master

mybranch

mybranch2

head

master

head

mybranch

master

mybranch

mybranch2

head

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

remote: upstream

head

master

head

mybranch

master

mybranch

mybranch2

head

master

mybranch

mybranch2

head

P
U

 S
 H

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

remote: upstream

head

master

head

mybranch

master

mybranch

mybranch2

head

master

mybranch

mybranch2

head

P U L L – R E Q U E S T

NOTE: When performing a pull-request, the following
must be specified:

<src_repo>/<src_branch>  <dst_repo>/<dst_branch>

Only commits from the specified source branch will be
pull-requested to the destination branch.

G I T H U B
*** Forking vs Cloning (Visualized) ***

remote: origin

local

remote: upstream

head

master

head

mybranch

master

mybranch

mybranch2

head

master

mybranch

mybranch2

head

5. Getting Set-Up with Git

1. If you haven’t already, you will need to do the following:
 Install Git on your computer
 Create an account on GitHub

2. Fork a repository on GitHub, make changes, and generate a pull-request

3. Create a public/private repository on GitHub and practice the Git workflow

6. Topics Not Covered…

The topics listed below slightly advanced and have not been covered. They
considered advanced because they involve changing history. They can have
dangerous consequences if applied improperly.

 Rebasing or squashing commits
 Resetting commits (at various levels)
 Force pushing commits to branches in remote repositories

NOTE: The above topics are not necessary to use Git, although they may provide
some convenience in certain situations… All required topics have already been
addressed in this presentation.

Useful References

• Official Git documentation
https://git-scm.com/doc

• Git downloads (Windows / Mac)
https://git-scm.com/downloads

• Git/GitHub Guide: A Minimal Tutorial
https://kbroman.org/github_tutorial

• A statistician's initial experiences of Git/GitHub
https://thestatsgeek.com/2015/05/16/a-statisticians-initial-experiences-of-gitgithub

https://git-scm.com/doc
https://git-scm.com/downloads
https://kbroman.org/github_tutorial
https://thestatsgeek.com/2015/05/16/a-statisticians-initial-experiences-of-gitgithub

Questions?

	Introduction to Git for Version Control
	Outline of Topics
	1. What is Git? Why use Git?
	1. What is GitHub? Why use GitHub?
	1. Flexible Workflow Styles Supported by Git
	1. Flexible Workflow Styles Supported by Git
	2. Definition of Terms
	2. Definition of Terms
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Definition of Terms (Visually)
	2. Snapshot of Git Repositories
	3. Navigating with Git
	3. Common and Useful Commands
	3. Common and Useful Commands
	3. Common and Useful Commands
	3. Common and Useful Commands
	Slide Number 25
	Slide Number 26
	Slide Number 27
	3. Common and Useful Commands (Visually)
	3. Common and Useful Commands (Visually)
	3. Common and Useful Commands (Visually)
	3. Common and Useful Commands (Visually)
	3. Common and Useful Commands (Visually)
	3. Common and Useful Commands (Visually)
	3. Common and Useful Commands (Visually)
	3. Typical Workflow with Common Commands
	4. Step-by-Step Walkthrough with Git
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	*** Forking vs Cloning ***
	*** Forking vs Cloning ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	*** Forking vs Cloning (Visualized) ***
	5. Getting Set-Up with Git
	6. Topics Not Covered…
	Useful References
	Questions?

